leetcode 354

题目描述

354. 俄罗斯套娃信封问题

给你一个二维整数数组 envelopes ,其中 envelopes[i] = [wi, hi] ,表示第 i 个信封的宽度和高度。

当另一个信封的宽度和高度都比这个信封大的时候,这个信封就可以放进另一个信封里,如同俄罗斯套娃一样。

请计算 最多能有多少个 信封能组成一组“俄罗斯套娃”信封(即可以把一个信封放到另一个信封里面)。

注意:不允许旋转信封。

示例 1:

1
2
3
输入:envelopes = [[5,4],[6,4],[6,7],[2,3]]
输出:3
解释:最多信封的个数为 3, 组合为: [2,3] => [5,4] => [6,7]

解题思路

  1. 拆解为二维dp,先将原数组按照宽度升序排序,如果宽度相同,按照长度降序排序,这样不会出现多个宽度相同的信封

超时

时间 O(NlogN)

空间 O(N)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution {
public int maxEnvelopes(int[][] envelopes) {
Arrays.sort(envelopes,new Comparator<int[]>(){
public int compare(int []o1,int []o2){
// 宽度相同,按长度降序排序
return o1[0]==o2[0]?
o2[1]-o1[1]:o1[0]-o2[0];
}
});
int len=envelopes.length;
int []length=new int[len];
for(int i=0;i<len;i++){
length[i]=envelopes[i][1];
}
return getLis(length);

}
public int getLis(int []arr){
int []dp=new int [arr.length];
Arrays.fill(dp,1);
for(int i=0;i<arr.length;i++){
for(int j=0;j<i;j++){
if(arr[i]>arr[j]){
dp[i]=Math.max(dp[i],dp[j]+1);
}
}
}
int ans=0;
for(int i=0;i<arr.length;i++){
ans=Math.max(ans,dp[i]);
}
return ans;
}
}
  1. 使用二分做,不是正常人想的,近期理解普通dp就行

leetcode 354
https://kkkkkong.github.io/posts/44619.html
作者
Kong Weichao
发布于
2023年4月19日
许可协议